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A talk about

A nice EFT

Some GR

high-energy techniques applied to a novel setting

what the 10 year future of inflationary cosmology stands on

— as I am now going to argue
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How do we probe inflation

e The only observable we are testing from the background solution is
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* All the rest, comes from the fluctuations L s
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e For the fluctuations
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— they are primordial

Tempe

— they are scale invariant
1
—they have atilt n;—1~—0.04 ~ O ay
— they are quite gaussian (%)
NG ~ 2> <10°
Aﬂwvw\w ~

— both scalar and maybe tensors
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Limits in terms of parameters of a Lagrangian
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* these are limits on the cutoff of the theory ﬁ.w with Smith and Zaldarriaga, JCAP2010
~N) —— Planck Collaboration 2013
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What has Planck done to theory?
e Planck improve limits wrt WMAP by a factor of ~3.

e Since NG ~ MN|M N >H%Ev Planck ~ 9 >H%E“ WMAP
U
* Given the absence of known or nearby threshold, this is not much.
e Planck was great
e but Planck was not good enough

— not Plank’s fault, but Nature’s faults

* Please complain with Nature

e Planck was an opportunity for a detection, not much an opportunity to change the

theory in absence of detection (luckily WMAP had atilta2.50 ,so we gotto 6 7))
* On theory side, little changes
— contrary for example to LHC, which was crossing thresholds

e Any result from LHC is changing the theory

Wednesday, September 17, 14



Cosmology 1s going to change 1n a few months

* Tremendous progress has been made through observation of the primordial

fluctuations
e In order to increase our knowledge of Inflation, we need more modes
e Planck will soon have observed all the modes from the CMB
e and then what?
e [ will assume we are not lucky
— no B-mode detection
— no signs from the beginning of inflation
e Unless we find a way to get more modes, the game is over
* Large Scale Structures offer the only medium-term place for hunting for more modes

— but we are compelled to understand them

* | do not think, so far, we understand them well enough
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What is next?

e Euclid and LSST like: this is our only next chance

— we need to understand how many modes are available

3
N\m_:&x

Number of modes ~
\m:&:

— Need to understand short distances

— Similar as from LEP to LHC
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The Effective Field Theory of

Cosmological Large Scale Structures
Redshift Space distortions in the EFTofLSS with Zaldarriaga 1409

Bias in the EFTof LSS me alone 1406

The QS@-—CQ@ Ummmuwﬁaﬁﬁs in the EFTof LSS with Angulo, Foreman, Schmittful 1406
see also Baldauf, Mirbabayi, Mercolli,Pajer 1406

The IR-resummed EFTofLSS with Zaldarriaga 1404
The rmm~.m=mmm=um~um~ﬂm EFTofL.SS with Porto and Zaldarriaga JCAP1405
H:m HUHAAHQPWM at N-—OQ@m with Carrasco, Foreman and Green JCAP1407

The 2-loop power spectrum
and the IR safe integrand

The Effective Theory of Large
Scale Structure (EFTofLSS)

with Carrasco, Foreman and Green JCAP1407

with Carrasco and Hertzberg JHEP 2012

Cosmological Non-linearities

. . with Baumann, Nicolis and Zaldarriaga JCAP 2012
as an Effective Fluid .
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A well defined perturbation theory

e Non-linearities at short scale
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A well defined perturbation theory

e Non-linearities at short scale
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A well defined perturbation theory

e Standard perturbation theory is not well defined

e Standard techniques

— perfect fluid P+ 0; A\c@&v =0,

: 0 : .
— expand in ~ 2 and solve iteratively

o
6~ \memswcﬁoﬁos x Source™ ?Ev%@u . “%A:Lq

= (6067 ~ [ P (G250 G'5)

e Perturbative equations break in the UV high
0~ —>1 for k> kng
\&.Z‘h \&.NQS|<
— no perfect fluid if we truncate Knign

Wednesday, September 17, 14



Idea of the
Effective Field Theory
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Consider a dielectric material

* Very complicated on atomic scales . ;ic
* On long distances d > datomic
— we can describe atoms with their gross characteristics
e polarizability dy,gc ~ o Egeerie  © @verage response to electric field
— we are led to a uniform, smooth material, with just some macroscopic properties

e we simply solve Maxwell dielectric equations, we do not solve for each atom.

 The universe looks like a dielectric

Dielectric Fluid
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Consider a dielectric material

* Very complicated on atomic scales . ;ic

 On long distances d > dagomic
— we can describe atoms with their gross characteristics
e polarizability dy,qc ~ a Egeenic - @Verage response to electric field
— we are led to a uniform, smooth material, with just some macroscopic properties
e we simply solve Maxwell dielectric equations, we do not solve for each atom.

 The universe looks like a dielectric

EM — GR

Dielectric Fluid Dielectric Fluid
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Bottom line result
e A well defined perturbation theory

e 2-loop in the EFT, with IR resummation
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e Data go as \aws e naively factor of 200 more modes than before
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With this
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With this
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With this

o | | | | | | |
- —
o
Look at the dot,
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Construction of the
Effective Field Theory
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Point-like Particle versus Extended Objects

e On short distances, we have point-like particles

— they move

&wl l, dzZ l.. 3
Z(q,m) +H Aan) _ —0,®[Z(q, )]

dn? dn

— 1induce overdensities

1 +8(2,n) = [ d&q 6™ (&~ 2(q,n))

— Source gravity

02 (7) = H26 ()
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Point-like Particle versus Extended Objects

e But we cannot describe point-like particles: we need to focus on long distances.
— We deal with Extended objects

* they move differently:

d*Z(q,m)
dn? tH dn

dZ(q.n) _ —8,®[Z(7,n)]
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Point-like Particle versus Extended Objects

e But we cannot describe point-like particles: we need to focus on long distances.
— We deal with Extended objects

* they move differently:

dZL(q.n) |, 4, d7L(3 )

~ . — H ~ — £ £ — — .
. = =0 [®L[ZL(q. )] + 5QV (7, n)0:0;PL[ZL(G. )] + - -+ | + ds(q.m)
dn? dn 2
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Point-like Particle versus Extended Objects

* They induce number over-densities and real-space multipole moments
1+ 6,0(&,n) = [ &7 (F—-zZ(qn)) ,
Qu-t(z ) = [ d*q QU (q ) (T — ZL(q. )

e they source gravity with the “overall’ mass

1 P
9;0; QY (Z,m) — wm@@bc:.ﬁ )+ v

1
2

Do | W

._ 3. ) ~ ., , )
Q,m,@h — M\INQE Ao:,;%. n) + \INS:BES?.. n)

~ muHH@Hmv\QmoS,Omﬁmﬁo = (q V + mwv ml“ T

* These equations can be derived from smoothing the point-particle equations

—but actually these are the assumption-less equations
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How do we treat the new terms?

e Similar to treatment of material polarizability:  ddipole ~ @intrinsic + @ F

e Take moments:
QY =(QY)s + Q3 + Qx

e Expectation value

(Q7)s = 14(n)dy

e Response (non-local in time) @&u« ~ 4 Ade @R&.@ hAMhGJ dv

e Stochastic noise

(@s) =0 (QsQs...) #0

e QOverall

Qi (Z,t) = I5(t) 0y + 13 (t) 0,0;®(F, ) +

e In summary: we obtain an expression just in terms of long-wavelength variables

@w
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This EFT is non-local in time

e For local EFT, we need hierarchy of scales.

— In space we are ok

with Carrasco, Foreman and Green 1310

Carroll, Leichenauer, Pollak 1310

* —> The EFT is local in space, non-local in time

— Technically it does not affect much because the linear propagator is local in space
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When do we stop?

. . . . . . e — M ﬁ i
Similar to treatment for material polarizability: dy; . ~ @ Euecrric * @i = CEilSy + -

Short distance physics is taken into account by expectation value, response, and noise

Poisson equation breaks when 6, (z,7) ~ 9,0,Q7(%,n)

— gravitational potential from quadrupole moment ~ the one from center of mass

* By dimensional analysis, this happens for distances shorter than a critical length
— the non-linear scale # 2 kL
— on long distances, £ < knr, write as many terms as precision requires.

e Manifestly convergent expansion in I

— | K1
kNL
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Connecting with the Eulerian Treatment

In the universe, finite-size particles move

Z(q,t) = ¢+ 5(q:1)

In Lagrangian space, we do not expand in S Amﬂ t v

.,
*%e

o

.
-t *

-
-~

In Eulerian, we do: we describe particles from a fixed position " ﬁ E i
X; + iod T

There are three expansion parameters for a given wavenumber

< Bk Py (k")

w .

€cs = k : : . Effect of Short Displacements
$ L (2m)3 k2
kdBk ,

€o< = IwNU 11 (k") Effect of Long Overdensities

o (2m)

o [F &K Py |
€s. =k T2 Effect of Long Displacements:

o (27) . Lagrangian does not expands in this
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The Effect of Long Displacements

L g2 B3k Pk
) o< o (2m)3 K2
e Imagine a mode

to
%bmwoﬁ wavelength

Y > —
LEulerian
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The Effect of Long Displacements

e Add a long “trivial’ force (trivial by GR) T \» d3k' Py (k')
< (2m)3 k2
e Just Translation ’

4@5:@ wavelenght

>
X < /
LEulerian

time

Big “trivial’ Perturbation

0 Pshort wavelength

o~ AN

LEulerian
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The Effect of Short Displacement

e Add along “trivial’ force (trivial by GR) T \8 d3k' Py (k)
TN @2r)? k?
e Deformation

%\Sobm wavelength

time

Deformation

N v

LEulerian
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The Effect of Tidal Forces

k A3k
e Add along “trivial’ force (trivial by GR) €5< = \o E Py (K)

e Deformation
<w@_obm wavelenght

%bmwoi wavelength

—
LEulerian

time

Deformation
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Connecting with the Eulerian Treatment

e Expand in all parameters (Eulerian treatment)

» The resulting equations are equivalent to Eulerian fluid-like equations

V2= 220
p

Owp + Hp + 0;(pv*) =0

. . . . 1 .
' 4+ Ho' 0700 = —0;7Y
p

—here it appears a non trivial stress tensor for the long-distance fluid

Tij HEO%@. |_|Qw%®. @w%\blT
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Perturbation Theory
with the EFT
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A non-renormalization theorem

e Can the short distance non-linearities change completely the overall expansion rate of

the universe, possibly leading to acceleration without A 2

e In terms of the short distance perturbation, the effective stress tensor reads
2
pr = ps (1 +vg + Ps)
2
pr = ps (2vg + @)

e when objects virialize, the induced pressure vanish

— ultraviolet modes do not contribute (like in SUSY)

e The backreaction 1s dominated by modes at the virialization scale

= Winduced ~ HOIm with Baumann, Nicolis and Zaldarriaga JCAP 2012
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Perturbation Theory within the EFT

e In the EFT we can solve iteratively (loop expansion) 0,00, Dy < 1

3
V¢ = H?°F
b .
op+ Hp+ 0;(pv') =0
. . . . 1 -
'+ Ho' v/ 0;0" = —0;7Y
p

ﬁG. — Do %@. -+ Qw %@. @w%\c
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Perturbation Theory within the EFT

e Regularization and renormalization of loops (scaling universe)

— evaluate with cutoff. By dim analysis:

AN/ k A B2
Nvlccu =c) [ — — | P AR — S P
1-loop = € A\,.er A»ZLV 11 T € A\ﬂqzhv A\Qrv 11

/ > \~ 3 .. \~ 3 N.
+n.w log A|v Ajv Py + m._M:._:,. Ajv Py1 + subleading in T
'NL NL 'NL
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Perturbation Theory within the EFT

e Regularization and renormalization of loops (scaling universe)

ko’
— ) P
\.ﬂ../:L v H
‘ Nm

3
v P;; + subleading in —
kNt

— evaluate with cutoff. By dim analysis:

ke

finite
Py + ¢ A

— absence of counterterm 7, = py §;; + ¢ 05 O*0p
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Perturbation Theory within the EFT

e Regularization and renormalization of loops (scaling universe)

A E o\ 2
2N (E) p
A»Ev A\Qrv !

— evaluate with cutoff. By dim analysis:

. 3 .
finite [ K kK
Py 4+ | — | Py +subleading in — —
kNt kNL NL
— absence of counterterm Tii = Po 0ij + mw Ois %5 0
2
k
_ A
U Nu 1—loop, counter — Ceounter I mu 11
vNL
k
A A NL
U Ceounter = —C1 1 0Ccounter A A v
U 9 3
w w — 5 k w finite k w
1—loop + 1—loop, counter — OCcounter I 11 + Cq I 11
NL NL
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Calculable terms in the EFT

e Has everything being lost?

w w
w w — Se k w finite k h
Hl_cc_u AT Hl_cc_u.oc::?:.|m.oc:_:_c_, :uT Q_ :

kNt kNt
"

— to make result finite, we need to add a counterterm with finite part

* need to fit to data (like a coupling constant), but cannot fit the k-shape
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Calculable terms in the EFT

e Has everything being lost?

w u

P P — Se k P finite k P
1-loop t+ £1-loop, counter = OCcounter I 11t ¢ 11
vINL

— to make result finite, we need to add a counterteym with finite part

* need to fit to data (like a coupling constapf), but cannot fit the k-shape
— the subleading finite term is not degenerate with a counterterm.

* it cannot be changed

e it is calculable by the EFT

—so it predicts an observation  ¢i™%* = (0.044
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I_esson from Renormalization

e Each loop-order L. contributed a finite, calculable term of order

L
wHkl_oc_um ~ \~|
vNL

— each higher-loop is smaller and smaller

» This happens after canceling the divergencies with counterterms

L
A k?
P L—loops: without counterterms — I \.N P A\,v
'NL NL

e each loop contributes the same

e Up to 2-loops, we need only the 1-loop counterterm
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IR-resummation

with Zaldarriaga 1404
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The Effect of Long-modes on Shorter ones

e In Eulerian treatment

%bmwoﬁ wavelength

Y > —
LEulerian
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The Effect of Long-modes
 Add a long "trivial’ force (trivial by GR)

e This tells you that one can resum the IR modes: this is the Lagrangian treatment

4@5:@ wavelenght

to
0 Pshort wavelength

Y > -
Lo < /
LEulerian

time

Big “trivial’ Perturbation

0 Pshort wavelength

o~ AN

LEulerian
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The Effect of Long-modes

e Two effects

—

) = 7(#(T)) + p(1) 9(T)

?l

8y

\\ﬂA lv — \mmsﬁﬁmp A

— Shift in coordinates

— Shift in field
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The Effect of Long-modes

e Two effects

—

) = 7(#(T)) + p(1) 0(T)

?l

8y

\\ﬂA lv — \\ﬂsﬁﬁmp A

— Shift in coordinates

— Shift in field
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The Effect of Long-modes

e Two effects

—

) = 7(#(T)) + p(1) 0(T)

?l

8y

m.‘A lv — mmbowﬁ& A

— Shift in coordinates

— Shift in field

e For fields that are scalar, this naively implies, by GR, that there are no IR effects in

Fourier space at equal time correlators

) with Frieman and Scoccimarro 1996
— both modes are shifted the same wa

V®ong wavelenght

P—— o with Carrasco, Foreman and Green 1304
N used to find the so-called consistency conditions in GR

T Eulerian

Creminelli, Norena, Simonovic 1309

T Eulerian
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o V®loug wavelenght
The Effect of Long-modes
O Pshort wavelerigth
with Zaldarriaga 1304 TN
(6(0)5(x)) 4
time
width affected by Ashort St e
peak located at Ajong T

The universe has features!

Even on equal time correlators, IR modes of order the BAO scale do not cancel!

— In Fourier space these are the wiggles

1% 10°

To compute the width, IR-BAO modes are relevant

But they just do kinematics, so we can resum them!

1000 -

S00

0.10 0.15 020 030 0.50
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Results
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098

0.96!

EFT of Large Scale Structures

1.04!

102!

k [h/Mpc]

L
e Well defined and manif. converg. AFV

kNt

* Every perturbative order improves the agreement as it should

e We know when we should fail, and we fail when we should

1-loop

~—
™~

00 01 02 03 04 05 N6 o

3-loop
estimate

2-loop
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102!

098

1.04!

EFT of Large Scale Structures

0.96!

00 0.1 02

03

k [h/Mpc]

e The lines with oscillations are obtained without resummation in the IR

— Getting the BAO peak wrong

with Carrasco, Foreman and Green 1310
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EFT of Large Scale Structures

I

I
I
I

-~
1

1.04!
1.02|

2 1.00!

Pgpr
P

0.98!

0.96!

L A i i i e i i I’ A 4 A ' s A 4 i i 4 A 1 A A A A e A A A s L A i A 4

00 0.1 0.2 03 04 0.5 0.6 0.7
k [h/Mpc]

e we fituntil k ~0.6h Z@ol , as where we should stop fitting

max —

— there are 200 more quasi linear modes than previously believed!

with Zaldarriaga 1404
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EF1 of Large dcale dStructures

Pgs EFT Vs SPT
S 104 ____
Q | 1
= !
3 _.
8 “_
o 102l N ——— ] L o4
Q7| A — U-100p
2 10N\ A |
£ \
8 098 -\t A e
S |
=l i T
o> ; — 2-loo
<1< 096 j P
00 01 02 03 04 05 06 07
k [h/Mpc]
e Comparison with Standard Treatment (feel free to ask about RPT)
e For the EFT, change from 1-loop to 2-loop ?@QBW& )
k ce, k
w:.lwiowe&._omwﬁrAmi me

wmum,ﬂ 2-loop — w: |_|wp-_oowl_|wwLoow —2 Awﬂ.vm s(1) |_|Q wvv \&

— the other new terms are clearly important

— they “conspire’ to the right answer

Py
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The BAO peak in "5 minutes’

* The IR-resummation is crucial to get the BAO peak right.

— we can do this very quickly.

with Zaldarriaga 1404

0.003 _ q _ _ _
0002} 1
W
A

= 0.001} -
Q
o,
~ M )
S 0.000] g o= -
IO.OOH,. TR Tl o m e 1w 1
, e L . -
80 90 100 110 120 130 140
r [Mpc/h]
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Measuring Parameters from
small N-body Simulations
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Measuring parameters from N-body sims.

e The EFT parameters can be measured from small N-body simulations
— similar to what happens in QCD: lattice sims

* As you change smoothing scale, the result changes
Running of ¢ conn(A) at kexi=01, a=1

: mn on =1 AMpc™! (CAMB) |
— H&.XMOIOI Iwﬂ.u.um\.%u:ﬁ%v 1
?ﬂv . s TUNNINE from Consuelo
N 6l A = 1/6 (h/Mpe) from Consuelo at A= 1/3 (h/Mpc)
o 12x107°f ]
= -
d d A zA.\ 1.%x 1076¢ A =1/3 (h/Mpc) from Consuelo ]
Cg 3 .m .
= d°k Pi3(k & ,
dA i\ (£) «% 8.x1077 -
6.x1077h—— _ -

02 04 06 08 10
A (/Mpc)
e Perfect agreement with fitting at low energies

— like measuring F; from lattice sims and =7 scattering

with Carrasco and Hertzberg JHEP 2012
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Measuring parameters from N-body sims.

e The EFT parameters can be measured from small N-body simulations
— similar to what happens in QCD: lattice sims

* As you change smoothing scale, the result changes
Running of ¢ conn(A) at kexi=01, a=1

mn on =1 AMpc™! (CAMB) |
. 14% 1076 e Ko = 18/ Mpc™! (CAMB) 1
?ﬂv ) mees TUNNINE from Consuelo
© 6f A =1/6 (h/Mpc) from Consuelo atA=1/3 (h/Mpc)
o 12X107° -
= ,
/A.\ 1.X HOlml A =1/3 (h/Mpc) from Consuelo .
des _d (% s pue) B |
— 13 Q At
dA dA a, 8.x1077f -
6.x1077Th—— _ —

02 04 06 08 10
A (/Mpc)
e Perfect agreement with fitting at low energies
— like measuring Fr from lattice sims and =7 scattering

[0:0,;0](7) = [0:0;m] (7) /[P (7) — [Osmi] (F)[8;.2)/ ([)(7))? — [Byma) () [0/ ([ (7))
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Other Observables
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Momentum and Bispectrum
with Zaldarriaga 1404 \

)2 / with Angulo, Foreman and Schmittful 1406
b9/
106 Ty
‘m B g [
1.04 050 I_ Jﬂ ; = EFT, ¢s term only
1 1 Bgd = 1-loop SPT
1.02; 1y
£l = 9 020 1 % 1 = Tree-level
& & 1.00¢ E __ i ._ - o EFT, it up 10 Knex =025 /Mpe
098} L0108 [ o EFT, fit up 10 Ky =0.30 h/Mpc |
096! - oost | __ L o EFTfitup 10 kuw =035 h/Mpe |
0.94 < __ . " {1 o EFT, fitup 0 Kye =040 h/Mpc
005 0.10 0.15 020 025 030 035 0.40 ooz § i} i
k —F\g@ou 0.1 02 0.3 04

05 0.6
maximum side length for triangles [h/Mpc|

e At one-loop, similarly great results
— with no additional parameter
— as good as they should
— very non-trivial functional forms

e Similar formulas just worked out for Bias

Senatore 1406 See also (McDoland and Roy 0902)

e and Redshfit space distortions
P with Zaldarriaga 1409
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Velocity field

e Momentum is a natural quantity, as connected to density by conservation law
7 (T)

e Velocity is not a natural quantity (%) = o7)

e Itis alocal composite operator: needs its own new counterterms:
\SQNA.@I& wv — @NAMN& wv — QHQQADIWQ wv + .- with Carrasco, Foreman and Green 1310
— no new counterterm for the equations

* Because of this, and because it is a viscous fluid, we generate vorticity

L 2 L ~3
wi) ~ a A v + « A|v
A wv ' NWBUEBQ&U. ? \AZF

— from local counterterm

— from viscosity

e Predicted result seems to be verified in sims
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Velocity field

e Momentum is a natural quantity, as connected to density by conservation law
7 (T)

e Velocity is not a natural quantity (%) = o7)

e Itis alocal composite operator: needs its own new counterterms:
\SQNA.@I& wv — @NAMN& wv — QHQQADIWQ wv + .- with Carrasco, Foreman and Green 1310
— no new counterterm for the equations

* Because of this, and because it is a viscous fluid, we generate vorticity

L 2 L ~3
(i) ()
\ NWBUEBQ&U. \AZF

— from local counterterm

— from viscosity

e Predicted result seems to be verified in sims
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Velocity field

e Momentum is a natural quantity, as connected to density by conservation law
7 (T)

e Velocity is not a natural quantity (%) = o7)

e Itis alocal composite operator: needs its own new counterterms:
\SQNA.@I& wv — @NAMN& wv — QHQQADIWQ wv + .- with Carrasco, Foreman and Green 1310
— no new counterterm for the equations

* Because of this, and because it is a viscous fluid, we generate vorticity

L 2 L ~3
wi) ~ a A v + « A|v
A wv ' NWBUEBQ&U. ? \AZF

— from local counterte

— from viscosity

e Predicted result seems to be verified in sims
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Velocity field

e Momentum is a natural quantity, as connected to density by conservation law
7 (T)

p(T)

e Itis alocal composite operator: needs its own new counterterms:

e Velocity is not a natural quantity v(Z) =

@?NA.&»Q wv — @NAMNU Nv — mHQ@,Ablwv wv -+ .. with Carrasco, Foreman and Green 1310
— no new counterterm for the equations

* Because of this, and because it is a viscous fluid, we generate vorticity

L 2 L ~3 Hahn, Angulo, Abel, to appear
AEMV ~ A v -+ Qi A|v see also Pueblas and Scoccimarro 08
wwgﬁvﬂmgmbﬁ. wzu—‘L A—l T LI ) q--— T T \ --— T L I -u-— T T -uunq— T T
— from local counterterm 3k
v fmm—— 1
— from viscosity 2 2 ‘_
- B \
@ 1~
g L
° o — L100N512
. . o 3 L300N512
* Predicted result seems to be verified in sims [ Llooons2
-1 lo0oN1024
(TR R I B T SN AT 111 B B IR T :_‘-FE%-%HMW\_N\F
10° 0.01 0.1 1 10

k(hMpc")
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Velocity field

e Momentum is a natural quantity, as connected to density by conservation law
7 (T)

p(T)

e Itis alocal composite operator: needs its own new counterterms:

e Velocity is not a natural quantity v(Z) =

@?NA.&»Q wv = @NAMNU Nv — mﬁ@mﬁbﬂ wv -+ .. with Carrasco, Foreman and Green 1310
— no new counterterm for the equations

* Because of this, and because it is a viscous fluid, we generate vorticity

L 2 L ~3 Hahn, Angulo, Abel, to appear
AEMV ~ +ag | — see also Pueblas and Scoccimarro 08
wﬂgﬁvﬂmgmbﬁ. wzu—‘L b—l T LB qqqd— T T qnuq-— T LI ] --— T T -dq-d— T L
— from local counterterm sl
x - [UTTmTmEEET %v._ *
— from viscosity g 21 S_ ‘
- N L}
& 1-
g L
° o— — L100N512
. ) . ) 3 L300N512
e Predicted result seems to be verified in sims [ L1000NS12
1= L1o00N1024
g m‘OH.B@H. msmﬂv\ﬂmo H@OFSW@E@M mOH 710 | NIRRTt B N IRl ol L _::_dcu_.w\_w:
) . 107° 0.01 0.1 1 10
End to SPT-like resummations k [hMpc”]
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EFT of Large Scale Structures

0.98:

0.96

00 01 02 03 04 05 06 07
k [h/Mpc]

L
* A manifestly convergent perturbation theory A%v
e we fituntil k.. ~ 0.6 Mpc™' ,as where we should stop fitting
— there are 200 more quasi linear modes than previously believed!
equil., orthog. <1

— huge impact on possibilities, for ex: JnL

e Can all of us handle 1t?! This is an huge opportunity and a challenge for us
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With this
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Conclusions

 Many (most?) of the features of QFT appear in the EFT of LSS:
— Loops, divergencies, counterterms and renormalization
— non-renormalization theorems
— Calculable and non-calculable terms
— Measurements in lattice and lattice-running
— IR-divergencies
e Results seem to be amazing, many calculations and verifications to do:
— like 1f we just learned perturbative QCD, and LHC was soon turning on
 higher 7 -point functions
e Validation with simulation

— With a growing number of groups (Caltech, Princeton, IAS, Cambridge, CEA,

Zurich..., just after 2-loop result, a workshop was organized by Princeton)

e If this works, the 10-yr future of Early Cosmology is good, even with no luck
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